If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-90t+120=0
a = 16; b = -90; c = +120;
Δ = b2-4ac
Δ = -902-4·16·120
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-2\sqrt{105}}{2*16}=\frac{90-2\sqrt{105}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+2\sqrt{105}}{2*16}=\frac{90+2\sqrt{105}}{32} $
| 3x+4=2(X+1) | | -2-10x=10-4x | | x/16=4/12 | | 2(z−10)=-4 | | f-8.1=14 | | 8x-7.6=4.23 | | 18=3x/7+3 | | 4x4x-36=3x3x-5x | | 2000+(400*n)=2800+(325*n) | | 13.9+3.2t=28.3 | | 88=(9x-83) | | 8t=1/2 | | 550/x=38 | | 4(12/3)=x | | 7x+18x-9=5(5x+3) | | -2w/3-9=-1 | | 7j=-4j+7j-4 | | 1000/y=35 | | 23x+14=16x+35 | | 2x+5(3x+6)=13 | | 23x+14=16x+ | | 23x+14=16x+53 | | 3x/4+5=33 | | 4+5n=6+2n | | 3(4x+1)=2(6x+4) | | -26=-8w+6(w-5) | | Y=6×-11-2×-3y=-7 | | 5=w(w.w | | 16x(x+5)=5 | | 200/a=800 | | S+t+79+19=180 | | 2(x-4)^2-36=0 |